Impairment in a discrimination reversal task after D1 receptor blockade in the pigeon "prefrontal cortex".

نویسندگان

  • B Diekamp
  • T Kalt
  • A Ruhm
  • M Koch
  • O Güntürkün
چکیده

Dopamine (DA) is known to modulate cognitive functions of the prefrontal cortex (PFC) of mammals, especially via D1 receptor mechanisms. Like the PFC, the neostriatum caudolaterale (NCL) of birds is characterized by dopaminergic input, and NLC and PFC lesions cause similar deficits. The significance of DA in a color discrimination reversal was assessed by evaluating the effects of bilateral infusions of the D1 receptor antagonist SCH 23390 into the NCL of pigeons (Columba livia). Reversal deficits were qualitatively similar to those in mammals. At a low dose, perseveration occurred predominantly to the incorrect stimulus. Higher doses caused additional spatial perseveration. The data demonstrate, for the first time, that D1 receptor mechanisms in the NCL of pigeons contribute substantially to its function in cognitive processes. Thus, the avian NCL and mammalian PFC could represent functionally equivalent neural networks under control of the DA system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired learning of a color reversal task after NMDA receptor blockade in the pigeon (Columba livia) associative forebrain (neostriatum caudolaterale).

The neostriatum caudolaterale (NCL) in the pigeon (Columba livia) forebrain is a multisensory associative area and a functional equivalent to the mammalian prefrontal cortex (PFC). To investigate the role of N-methyl-D-aspartate (NMDA) receptors in the NCL for learning flexibility, the authors trained pigeons in a color reversal task while locally blocking NMDA receptors with D,L-2-2-amino-5-ph...

متن کامل

Guidance of instrumental behavior under reversal conditions requires dopamine D1 and D2 receptor activation in the orbitofrontal cortex.

The orbitofrontal cortex (OFC) plays a critical role in learning a reversal of stimulus-reward contingencies. Dopamine (DA) neurons probably support reversal learning by emitting prediction error signals that indicate the discrepancy between the actually received reward and its prediction. However, the role of DA receptor-mediated signaling in the OFC to adapt behavior to changing stimulus-rewa...

متن کامل

The Effect of Ketanserin and Pirenperone Injected into the CA1 Region on Spatial Discrimination

In the present study, the effect of 5-HT2A receptor blockers in CA1 region of rat hippocampus on spatial learning was assessed in a T-maze, a spatial discrimination task. Rats were canulated bilaterally and injected daily vehicle (saline), 5-HT2A-selective antagonist, ketanserin (0.6, 1.2 or 2.4 µg/0.5 µl) and pirenperone (0.1, 0.3, 1.2 or 2.4 µg/0.5 µl) into the cannula 30 minutes before train...

متن کامل

Maintenance in working memory or response selection? Functions of NMDA receptors in the pigeon "prefrontal cortex".

The prefrontal cortex is involved in various aspects of working memory like stimulus maintenance and response selection functions. Neurobehavioral studies and neurocomputational models assume a role for NMDA receptors in prefrontal cortex for maintenance processes, while our previous studies on NMDA receptors in the avian prefrontal cortex-analogue, the nidopallium caudolaterale (NCL), showed t...

متن کامل

Differential Effects of the Lateral Hypothalamus Lesion as an Origin of Orexin and Blockade of Orexin-1 Receptor in the Orbitoftontal Cortex and Anterior Cingulate Cortex on Their Neuronal Activity

Several studies revealed that orexins may take part in the regulation of the different forms of affective and cognitive processes during wakefulness. The orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) as an important part of the prefrontal cortex (PFC) have a crucial role in cognitive processes such as reward and decision-making and has a high density of orexin receptor type 1 (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Behavioral neuroscience

دوره 114 6  شماره 

صفحات  -

تاریخ انتشار 2000